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Abstract

A prime factor algorithm is used to compute the Discrete Fourier
Transform (DFT) of a complex vector recursively.

1 Introduction

A forward (direct) discrete Fourier transform y = «W,,” where W, = e~12mik/n

and a reverse (inverse) discrete Fourier transform y = zW," where W, - ik =
eti27ik/m and 0 <n is the length of both complex vectors « and y. The compu-
tational complexity is of order n? if n is a prime number but can be reduced if
n can be factored into small prime numbers.

Suppose that n = pg where p is the smallest prime number that can be
factored out of n. Then
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Vh €{0,1,...,p— 1} and Vk € {0,1,...,¢ — 1}.



If Y is a px ¢ matrix view of vector y where Yy, = ygnyr and X is a gxp
matrix view of vector  where X, = x4, then the discrete Fourier transform

Y =WT (MT+(XTW7T)) (3)

can be computed recursively by applying the discrete Fourier transform Wf
where Wq:ij = eF12m7k/4 to each of the p rows of matrix X7, multiplying matrix
T = XTWF element by element by the pxq matrix M where M;F ,, = eFi2mth/n
and applying the discrete Fourier transform W where W;F W= eFi2mhl/p o
each of the ¢ columns of matrix M T «T.

The transform may be computed in place by transposing matrix X in place
recursively before all other processing. If a digit reverse algorithm is used instead
of recursive transposition, no element x; is moved to another location zj in
vector x more than once. Offset
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is computed by first decomposing offset
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into digits 0 < d; < r; of the mixed radix representation where the ¢ radices are
the factors of n = Hf:é r;. In this case, the radices are the prime factors of n
in order from least to greatest.

The total number of complex floating-point multiplications C' can be calcu-

lated from the length
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of the initial vector and the length
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of the vectors after k reductions where the p; are the ¢ prime factors of n.
The total number of complex floating-point multiplications

C
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for the initial function call is calculated by substituting the recursion equation
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up through the final equation
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which yields
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If the prime factors p; = p are all identical, then
C=n{l(p+1)—-1). (12)

The computational complexity is O (n -log, (n) p) or O (n2) ifp=norO (n3/2)
if p2 =nor O(n-lg(n))ifp = 2. The computational complexity of a radix p > 2
algorithm is always greater than a radix 2 algorithm by a factor of p/lg (p) but
a radix p > 2 implementation may actually be faster than a radix 2 implemen-
tation.

2 Real to Complex FFTs

When the source vector x is real, the destination vector y is complex but yq is
real, Yy, = yj and y, /7 is real if n is even. The fast Fourier transform can be
computed in-place and returned with the imaginary part of yy set to the real
part of y,, /5 if n is even or to the imaginary part of y,_1)/2 if n is odd.

The discrete Fourier transform W;F is applied in-place to each of the p rows
of real matrix X7 to form the product T = XTW;F. Because Tyg and Ty, /o
are real, the first ¢/2+1 columns of complex matrix T are packed so that each
row of real matrix X7 contains

R {To o}, Ty g2y Ten Tro ... Tpg2-1 (13)

if ¢ is even but the first (¢+1)/2 columns of complex matrix T are packed so
that each row of real matrix X7 contains
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if ¢ is odd. The transform can be completed for the missing columns of complex
matrix 1" using
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If both p and ¢ are odd, each of the first (¢+1)/2 columns of matrix T is
multiplied by the corresponding column of matrix M,F element by element then
the discrete Fourier transform W is applied before the column is stored back
into real matrix X7 with row h of complex matrix Y stored in rows 2k and

2h+1 of real matrix X7T

R{Yo0,0}, 3{Yo,q-1)/2} Yo Yo,(q-3)/2
S{Y p—1)/2.00 R{Y0, (g41)/2} Yo,4-1 Y0,(4+3)/2
R{Y1,0}, 3{Y1,(g-1)/2} Y11 Y1 (q-3)/2
S{Y1,0}, R{Y1, (g41)/2} Y1,9-1 Y1,(q+3)/2
R{Yno}t S{Yh,(g-1)/2} Y Yh,(q-3)/2
S{Yho0}, R{Yn,(q4+1)/2} Yh,g-1 Y, (q+3)/2

R{Y(p—3)/2,00, H{Y(p-3)/2,4-1)/2}  Y(p-3)/2.1

R{Y0,(q—1)/2}
S{YvOV((H-l)/Z}
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S{Y(p-3)20} WY (p-3)/2, 041172} Yip-3)/2,4-1 Yop-3)/2,+3)72  S{Yp-3)/2,(a+1)/2
MY p-1)/200 S /2,-1)/28 Yo-1)/21 Yip-1)/2,(a-3)/2 %EY(;*l)/mfl)/z}
16
but if p is even and ¢ is odd,
R{Y0,0}, 3{Y0,(q-1)/2} Yo,1 Y0,(q-3)/2 R{Y0,(q—1)/2}
R{Yp 2,0}, W{Yo,(g+1)/2} Yo,4-1 Y0,(q+3)/2 S{Y0,(q+1)/2}

R{Y1,0}, 3{Y1,(g-1)/2} Yi1 Y1, (q—3)/2 R{Y1, (g-1)/2}

S{Y1,0}, {1, (g41)/2} Yi,9-1 Y1, (g+3)/2 S{Y1,(g41)/2}

R{Yno} S{Yh,(g-1)/2} Y Yi.(q—3)/2 R{Yh,(g-1)/2}

S{Yno}, R{Yh (g+1)/2} Yh g1 Y, (q+3)/2 S{Yh,(g+1)/2}
R{Yp/2-1,0}0 S{Yp/2-1,g-1)/2}  Ypj2-11 Ypra-1,g-3)2 R{Ypj2-1,4-1)/2}

S{Y,/2-1,00 R{Yp 2-1,(g+1) 2} Yoj2—1,4-1

Yo/2-1,(a+3)/2

S{Yp/2-1,(g+1)/2}

(17)
and if p = 2 and ¢ is odd,
R{Yo,0}, 3{Y0,(q-1)/2} You Yo,(q-3)2 R{Y0,q-1)/2} (18)
R{Y1,0}, ®{Y0,(g41)/2} Yo,4-1 Yo,q+3)2 S{Y0,(g+1)/2}-

The real and imaginary parts of complex elements Y}, (441)/2 through Y}, ;1 are
stored in reverse order so that the elements in columns 2 through ¢ — 1 of rows
2h+1 of real matrix X7 may simply be reversed. The real elements in row 2h
and column 1 are swapped with the real elements in row 2h+1 and column 0 of
real matrix X7 Vh € {0,1,...,p/2—1} if p is even or Vh € {0,1,...,(p—3)/2}
if p is odd. Then, if p is odd, the element in row (p—1)/2 is swapped with the
element in row 0 of column 1 of real matrix X 7.



If both p and ¢ are even, each of the first /241 columns of matrix T is
multiplied by the corresponding column of matrix M,F element by element then
the discrete Fourier transform W is applied before row h of complex matrix
Y is stored back into rows 2h and 2h+1 of real matrix X7

R{Yo,0}, R{Y0,q/2} Y01 Y2 v Yo g0
§R{va/2,0}a %{}/O,q/Q} }/07(1—1 YOJI—Q te YO,‘]/2+1
R{Y1,0}, R{Y1 4/2} Yiq Yio coe Yigo
S{Y1,0}, S{Y1,4/2} Yig1 Yig0 coe Yigom
%{Y}ho}, %{Yh,q/g} Yh,l Yh,2 o Yh,q/2—1
S{Yn0}, S{Yh,q/2} Yhq-1 Yhq-2 v Yhgro41
R{Yp/2—1.0}, ®{Yp/2-1,4/2} Ypr2—1.1 Yp/2-12 v Ypio14/2-1
%{Yp/Z—l,O}v %{Yp/Q—l,q/2} Yp/2—1,q—1 Yp/2—1,q—2 cee Yp/2—1,q/2+1
(19)
and if p = 2 and ¢ is even
§R{YVO,O}a %{YVO,q/2} YO,l YO,2 cee YO,q/Zfl (20)
R{Y10}, 3{Yo,q/2} Yoq-1 Yoq2 - Yog241-

Only the first p/2 rows of column ¢/2 are stored back into column 1 of real matrix
X7 because Yoo1i-hq2 = Y}:q/Q. The real and imaginary parts of complex
elements Y}, 4/241 through Y}, .1 are stored in reverse order so that the elements
in columns 2 through ¢ — 1 of rows 2h+1 of real matrix X7 may simply be
reversed. The real elements in row 2h and column 1 are swapped with the
elements in row 2h+1 and column 0 of real matrix X7 Vh € {0,1,...,p/2—1}.

3 Complex to Real FFTs

The complex to real discrete Fourier Transform is computed by reversing the
real to complex discrete Fourier Transform.
Equation 1 becomes
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Equation 2 becomes
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Equation 3 becomes

X = ((WFy)«MFywF)". (23)

The transform may be computed in place by transposing matrix Y in place
recursively after all other processing. If a digit reverse algorithm is used instead
of recursive transposition, no element z; is moved to another location z; in
vector x more than once. Offset

k= d; Th (24)
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into digits 0 < d; < r; of the mixed radix representation where the ¢ radices are
the factors of n = Hf:é r;. In this case, the radices are the prime factors of n
in order from least to greatest.



